On Noether’s bound for polynomial invariants of a finite group
نویسندگان
چکیده
منابع مشابه
On Noether’s Bound for Polynomial Invariants of a Finite Group
E. Noether’s a priori bound, viz., the group order g, for the degrees of generating polynomial invariants of a finite group, is extended from characteristic 0 to characteristic prime to g.
متن کاملOn a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملon a conjecture of a bound for the exponent of the schur multiplier of a finite $p$-group
let $g$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(g)$ and let $m=lfloorlog_pk floor$. we show that $exp(m^{(c)}(g))$ divides $exp(g)p^{m(k-1)}$, for all $cgeq1$, where $m^{(c)}(g)$ denotes the c-nilpotent multiplier of $g$. this implies that $exp( m(g))$ divides $exp(g)$, for all finite $p$-groups of class at most $p-1$. moreover, we show that our result is an improvement...
متن کاملInvariants of finite group schemes
Let k be an algebraically closed field, G a finite group scheme over k operating on a scheme X over k. Under assumption that X can be covered by G-invariant affine open subsets the classical results in [3] and [14] describe the quotient X/G. In case of a free action X is known to be a principal homogeneous G-space over X/G. Furthermore, the category of G-linearized quasi-coherent sheaves of OX ...
متن کاملMonoidal Morita invariants for finite group algebras
Two Hopf algebras are called monoidally Morita equivalent if module categories over them are equivalent as linear monoidal categories. We introduce monoidal Morita invariants for finite-dimensional Hopf algebras based on certain braid group representations arising from the Drinfeld double construction. As an application, we show, for any integer n, the number of elements of order n is a monoida...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Research Announcements of the American Mathematical Society
سال: 2001
ISSN: 1079-6762
DOI: 10.1090/s1079-6762-01-00088-9